初探动态规划
「动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。
在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。
!!! question "爬楼梯"
给定一个共有 $n$ 阶的楼梯,你每步可以上 $1$ 阶或者 $2$ 阶,请问有多少种方案可以爬到楼顶?
如下图所示,对于一个 $3$ 阶楼梯,共有 $3$ 种方案可以爬到楼顶。
本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 $1$ 阶或 $2$ 阶,每当到达楼梯顶部时就将方案数量加 $1$ ,当越过楼梯顶部时就将其剪枝。代码如下所示:
- "Python"
```python
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
"""回溯"""
// 当爬到第 n 阶时,方案数量加 1
if state == n:
// 遍历所有选择 for choice in choices:res[0] += 1
// 剪枝:不允许越过第 n 阶 if state + choice > n: continue // 尝试:做出选择,更新状态 backtrack(choices, state + choice, n, res) // 回退
def climbing_stairs_backtrack(n: int) -> int: """爬楼梯:回溯""" choices = [1, 2] // 可选择向上爬 1 阶或 2 阶 state = 0 // 从第 0 阶开始爬 res = [0] // 使用 res[0] 记录方案数量 backtrack(choices, state, n, res) return res[0]
- "C++"
```cpp
/* 回溯 */
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (auto &choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
vector<int> choices = {1, 2}; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
vector<int> res = {0}; // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}
- "Java"
```java
/ 回溯 /
void backtrack(List
choices, int state, int n, List res) { // 当爬到第 n 阶时,方案数量加 1 if (state == n)
// 遍历所有选择 for (Integer choice : choices) {res.set(0, res.get(0) + 1);
} }// 剪枝:不允许越过第 n 阶 if (state + choice > n) continue; // 尝试:做出选择,更新状态 backtrack(choices, state + choice, n, res); // 回退
/ 爬楼梯:回溯 /
int climbingStairsBacktrack(int n) {
List
## 方法一:暴力搜索
回溯算法通常并不显式地对问题进行拆解,而是将求解问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。
我们可以尝试从问题分解的角度分析这道题。设爬到第 $i$ 阶共有 $dp[i]$ 种方案,那么 $dp[i]$ 就是原问题,其子问题包括:
$$
dp[i-1], dp[i-2], \dots, dp[2], dp[1]
$$
由于每轮只能上 $1$ 阶或 $2$ 阶,因此当我们站在第 $i$ 阶楼梯上时,上一轮只可能站在第 $i - 1$ 阶或第 $i - 2$ 阶上。换句话说,我们只能从第 $i -1$ 阶或第 $i - 2$ 阶迈向第 $i$ 阶。
由此便可得出一个重要推论:**爬到第 $i - 1$ 阶的方案数加上爬到第 $i - 2$ 阶的方案数就等于爬到第 $i$ 阶的方案数**。公式如下:
$$
dp[i] = dp[i-1] + dp[i-2]
$$
这意味着在爬楼梯问题中,各个子问题之间存在递推关系,**原问题的解可以由子问题的解构建得来**。下图展示了该递推关系。

我们可以根据递推公式得到暴力搜索解法。以 $dp[n]$ 为起始点,**递归地将一个较大问题拆解为两个较小问题的和**,直至到达最小子问题 $dp[1]$ 和 $dp[2]$ 时返回。其中,最小子问题的解是已知的,即 $dp[1] = 1$、$dp[2] = 2$ ,表示爬到第 $1$、$2$ 阶分别有 $1$、$2$ 种方案。
观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁:
- "Python"
```python
def dfs(i: int) -> int:
"""搜索"""
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
// dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1) + dfs(i - 2)
return count
def climbing_stairs_dfs(n: int) -> int:
"""爬楼梯:搜索"""
return dfs(n)
- "C++"
```cpp
/ 搜索 /
int dfs(int i) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
// dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1) + dfs(i - 2); return count; }return i;
/ 爬楼梯:搜索 / int climbingStairsDFS(int n) { return dfs(n); }
- "Java"
```java
/* 搜索 */
int dfs(int i) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1) + dfs(i - 2);
return count;
}
/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
return dfs(n);
}
下图展示了暴力搜索形成的递归树。对于问题 $dp[n]$ ,其递归树的深度为 $n$ ,时间复杂度为 $O(2^n)$ 。指数阶属于爆炸式增长,如果我们输入一个比较大的 $n$ ,则会陷入漫长的等待之中。
观察上图,指数阶的时间复杂度是“重叠子问题”导致的。例如 $dp[9]$ 被分解为 $dp[8]$ 和 $dp[7]$ ,$dp[8]$ 被分解为 $dp[7]$ 和 $dp[6]$ ,两者都包含子问题 $dp[7]$ 。
以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的子问题上。
方法二:记忆化搜索
为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem
来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。
- 当首次计算 $dp[i]$ 时,我们将其记录至
mem[i]
,以便之后使用。 - 当再次需要计算 $dp[i]$ 时,我们便可直接从
mem[i]
中获取结果,从而避免重复计算该子问题。
代码如下所示:
- "Python"
```python
def dfs(i: int, mem: list[int]) -> int:
"""记忆化搜索"""
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
// 若存在记录 dp[i] ,则直接返回之 if mem[i] != -1:return i
// dp[i] = dp[i-1] + dp[i-2] count = dfs(i - 1, mem) + dfs(i - 2, mem) // 记录 dp[i] mem[i] = count return countreturn mem[i]
def climbing_stairs_dfs_mem(n: int) -> int: """爬楼梯:记忆化搜索""" // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录 mem = [-1] * (n + 1) return dfs(n, mem)
- "C++"
```cpp
/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
vector<int> mem(n + 1, -1);
return dfs(n, mem);
}
- "Java"
```java
/ 记忆化搜索 /
int dfs(int i, int[] mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
// 若存在记录 dp[i] ,则直接返回之 if (mem[i] != -1)return i;
// dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1, mem) + dfs(i - 2, mem); // 记录 dp[i] mem[i] = count; return count; }return mem[i];
/ 爬楼梯:记忆化搜索 / int climbingStairsDFSMem(int n) { // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录 int[] mem = new int[n + 1]; Arrays.fill(mem, -1); return dfs(n, mem); }
观察下图,**经过记忆化处理后,所有重叠子问题都只需计算一次,时间复杂度优化至 $O(n)$** ,这是一个巨大的飞跃。

## 方法三:动态规划
**记忆化搜索是一种“从顶至底”的方法**:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯逐层收集子问题的解,构建出原问题的解。
与之相反,**动态规划是一种“从底至顶”的方法**:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。
由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 `dp` 来存储子问题的解,它起到了与记忆化搜索中数组 `mem` 相同的记录作用:
- "Python"
```python
def climbing_stairs_dp(n: int) -> int:
"""爬楼梯:动态规划"""
if n == 1 or n == 2:
return n
// 初始化 dp 表,用于存储子问题的解
dp = [0] * (n + 1)
// 初始状态:预设最小子问题的解
dp[1], dp[2] = 1, 2
// 状态转移:从较小子问题逐步求解较大子问题
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
"C++"
/* 爬楼梯:动态规划 */ int climbingStairsDP(int n) { if (n == 1 || n == 2) return n; // 初始化 dp 表,用于存储子问题的解 vector<int> dp(n + 1); // 初始状态:预设最小子问题的解 dp[1] = 1; dp[2] = 2; // 状态转移:从较小子问题逐步求解较大子问题 for (int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; }
"Java"
/* 爬楼梯:动态规划 */ int climbingStairsDP(int n) { if (n == 1 || n == 2) return n; // 初始化 dp 表,用于存储子问题的解 int[] dp = new int[n + 1]; // 初始状态:预设最小子问题的解 dp[1] = 1; dp[2] = 2; // 状态转移:从较小子问题逐步求解较大子问题 for (int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; }
下图模拟了以上代码的执行过程。
与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 $i$ 。
根据以上内容,我们可以总结出动态规划的常用术语。
- 将数组
dp
称为「$dp$ 表」,$dp[i]$ 表示状态 $i$ 对应子问题的解。 - 将最小子问题对应的状态(第 $1$ 阶和第 $2$ 阶楼梯)称为「初始状态」。
- 将递推公式 $dp[i] = dp[i-1] + dp[i-2]$ 称为「状态转移方程」。
空间优化
细心的读者可能发现了,由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无须使用一个数组 dp
来存储所有子问题的解,而只需两个变量滚动前进即可。代码如下所示:
"Python"
def climbing_stairs_dp_comp(n: int) -> int: """爬楼梯:空间优化后的动态规划""" if n == 1 or n == 2: return n a, b = 1, 2 for _ in range(3, n + 1): a, b = b, a + b return b
"C++"
/* 爬楼梯:空间优化后的动态规划 */ int climbingStairsDPComp(int n) { if (n == 1 || n == 2) return n; int a = 1, b = 2; for (int i = 3; i <= n; i++) { int tmp = b; b = a + b; a = tmp; } return b; }
"Java"
/* 爬楼梯:空间优化后的动态规划 */ int climbingStairsDPComp(int n) { if (n == 1 || n == 2) return n; int a = 1, b = 2; for (int i = 3; i <= n; i++) { int tmp = b; b = a + b; a = tmp; } return b; }
观察以上代码,由于省去了数组 dp
占用的空间,因此空间复杂度从 $O(n)$ 降至 $O(1)$ 。
在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。这种空间优化技巧被称为“滚动变量”或“滚动数组”。