堆排序
!!! tip
阅读本节前,请确保已学完“堆“章节。
「堆排序 heap sort」是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。
- 输入数组并建立小顶堆,此时最小元素位于堆顶。
- 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。
以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。
算法流程
设数组的长度为 $n$ ,堆排序的流程如下图所示。
- 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
- 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 $1$ ,已排序元素数量加 $1$ 。
- 从堆顶元素开始,从顶到底执行堆化操作(Sift Down)。完成堆化后,堆的性质得到修复。
- 循环执行第
2.
步和第3.
步。循环 $n - 1$ 轮后,即可完成数组排序。
!!! tip
实际上,元素出堆操作中也包含第 `2.` 步和第 `3.` 步,只是多了一个弹出元素的步骤。
"<1>"
"<2>"
"<3>"
"<4>"
"<5>"
"<6>"
"<7>"
"<8>"
"<9>"
"<10>"
"<11>"
"<12>"
在代码实现中,我们使用了与“堆”章节相同的从顶至底堆化 sift_down()
函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 sift_down()
函数添加一个长度参数 $n$ ,用于指定堆的当前有效长度。代码如下所示:
- "Python"
```python
def sift_down(nums: list[int], n: int, i: int):
"""堆的长度为 n ,从节点 i 开始,从顶至底堆化"""
while True:
// 判断节点 i, l, r 中值最大的节点,记为 ma l = 2 * i + 1 r = 2 * i + 2 ma = i if l < n and nums[l] > nums[ma]: ma = l if r < n and nums[r] > nums[ma]: ma = r // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出 if ma == i: break // 交换两节点 nums[i], nums[ma] = nums[ma], nums[i] // 循环向下堆化 i = ma
def heap_sort(nums: list[int]): """堆排序""" // 建堆操作:堆化除叶节点以外的其他所有节点 for i in range(len(nums) // 2 - 1, -1, -1): sift_down(nums, len(nums), i) // 从堆中提取最大元素,循环 n-1 轮 for i in range(len(nums) - 1, 0, -1): // 交换根节点与最右叶节点(交换首元素与尾元素) nums[0], nums[i] = nums[i], nums[0] // 以根节点为起点,从顶至底进行堆化 sift_down(nums, i, 0)
- "C++"
```cpp
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = 2 * i + 1;
int r = 2 * i + 2;
int ma = i;
if (l < n && nums[l] > nums[ma])
ma = l;
if (r < n && nums[r] > nums[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i) {
break;
}
// 交换两节点
swap(nums[i], nums[ma]);
// 循环向下堆化
i = ma;
}
}
/* 堆排序 */
void heapSort(vector<int> &nums) {
// 建堆操作:堆化除叶节点以外的其他所有节点
for (int i = nums.size() / 2 - 1; i >= 0; --i) {
siftDown(nums, nums.size(), i);
}
// 从堆中提取最大元素,循环 n-1 轮
for (int i = nums.size() - 1; i > 0; --i) {
// 交换根节点与最右叶节点(交换首元素与尾元素)
swap(nums[0], nums[i]);
// 以根节点为起点,从顶至底进行堆化
siftDown(nums, i, 0);
}
}
- "Java"
```java
/ 堆的长度为 n ,从节点 i 开始,从顶至底堆化 /
void siftDown(int[] nums, int n, int i) {
while (true) {
} }// 判断节点 i, l, r 中值最大的节点,记为 ma int l = 2 * i + 1; int r = 2 * i + 2; int ma = i; if (l < n && nums[l] > nums[ma]) ma = l; if (r < n && nums[r] > nums[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出 if (ma == i) break; // 交换两节点 int temp = nums[i]; nums[i] = nums[ma]; nums[ma] = temp; // 循环向下堆化 i = ma;
/ 堆排序 / void heapSort(int[] nums) { // 建堆操作:堆化除叶节点以外的其他所有节点 for (int i = nums.length / 2 - 1; i >= 0; i--) { siftDown(nums, nums.length, i); } // 从堆中提取最大元素,循环 n-1 轮 for (int i = nums.length - 1; i > 0; i--) { // 交换根节点与最右叶节点(交换首元素与尾元素) int tmp = nums[0]; nums[0] = nums[i]; nums[i] = tmp; // 以根节点为起点,从顶至底进行堆化 siftDown(nums, i, 0); } } ```
算法特性
- 时间复杂度为 $O(n \log n)$、非自适应排序:建堆操作使用 $O(n)$ 时间。从堆中提取最大元素的时间复杂度为 $O(\log n)$ ,共循环 $n - 1$ 轮。
- 空间复杂度为 $O(1)$、原地排序:几个指针变量使用 $O(1)$ 空间。元素交换和堆化操作都是在原数组上进行的。
- 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。